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Açai (Euterpe oleracea Mart.) is a native Amazonian palm fruit, and widely consumed in 

South America, mainly Brazil. A ripened açai indicates a dark purple color, due to 

anthocyanins with predominance of cyanidin-3-O-glucoside (C3G) and 

cyanidin-3-O-rutinoside (C3R). In this study, we first separated fresh açai to 

mesocarp/epicarp and endocarp portions and measured their anthocyanin levels. In addition, 

their antioxidant activities were analyzed by using various assays, hydrophilic and 

lipophilic oxygen radical absorbance capacity (H-ORACFL and L-ORACFL), free radical 

scavenging capacity by 1,1 -diphenyl-2-picrylhydrazyl (DPPH) and 

2,2 -azinobis(3-ethybenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant 

power (FRAP), and superoxide dismutase (SOD) like activity. Levels of C3G and C3R in 

mesocarp/epicarp portion were 5.49±1.52 and 13.0±3.93 mg/g extracts, respectively, and 

these amounts were remarkably higher than that in endocarp (0.39±0.04 and 1.25±0.06 

mg/g extracts). H-ORACFL value in mesocarp/epicarp was about 150 times higher than 

L-ORACFL. Açai mesocarp/epicarp extracts showed potent antioxidant activity compared to 

blueberry extract on every antioxidant assay employed in this study except for L-ORACFL. 

Next, absorption and exclusion of açai anthocyanins orally administered to rats were 

evaluated. After oral administration of açai extracts (400 mg/kg body weight), both 

anthocyanins appeared intact in the plasma. Their plasma concentrations of C3G and C3R 

reached a maximum of 101.0±55.6 nM at 60 min and 537.0±99.1 nM at 120 min after 

administration, respectively, and then sharply decreased. Their urinary excretion was 

highest between 0 h and 2 h after administration, and had ceased by 24 h. The total 
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quantities of açai anthocyanins excreted into urine represented 0.6±0.1% in C3G and 

1.0±0.1% in C3R of consumed anthocyanins. In conclusion, fresh açai contained 

hydrophilic antioxidants including C3G and C3R, and therefore has strong antioxidant 

potency especially in the mesocarp/epicarp portion. Upon consumption, açai anthocyanins 

appeared as intact forms in plasma.  
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Anthocyanidins are important plant pigments responsible for red, blue and purple 

colors. Generally, anthocyanidins widely exist as glycoside derivatives, so called 

anthocyanins, in colored fruits and vegetables, such as berries (1-5). Anthocyanidins and 

anthocyanins have been shown to exhibit a range of biological effects, including 

antioxidant activity, anticarcinogenesis, induction of apoptosis, anti-obesity, anti-diabetes, 

and prevention of DNA damage (6-14). Interestingly, a recent research suggested that 

anthocyanins can also prevent oxidative stress resulting from psychological stress (15). 

Consequently, the regular consumption of foods rich in anthocyanins has been considered 

to be associated with a reduced risk of developing chronic diseases (16, 17). 

Açai (Euterpe oleracea Mart.) is a palm plant widely distributed in the Amazonian 

area, especially Brazil. Açai is a multi-stemmed plant as shown in Figure 1A, and its fruit, 

in appearance, looks similar to blueberry. The size of an individual açai fruit is around 1 to 

1.5 cm in diameter. An outer, edible layer composed of mesocarp and very thin epicarp 

covers a lone, fibrous seed, consisting of the endocarp and endosperm (Figure 1B). A 

ripened açai indicates a dark purple color, due to high amounts of anthocyanins with 

predominance of cyanidin-3-O-glucoside (C3G) and cyanidin-3-O-rutinoside (C3R) (18), 

indicating that açai might be one of anthocyanin-rich foods in addition to berries. Basically, 

açai has been consumed as a raw açai pulp made of the outer, edible layer, which is 

removed after steeping in cool water. Additionally, freeze-dried açai powder is popularly 

consumed as an additive in juice and ice cream (19). Recently, some research groups have 

reported properties of açai; for example, detailed information of constituents including 
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anthocyanins, of taste, and of antioxidant potency using in vitro and in vivo assay systems 

(18-25). However, all of them used for research materials are frozen açai pulp or its 

freeze-dried powder, not fresh açai fruit. One of the reasons considered is the difficulty in 

its transport from the place of harvest in the Amazonian area to a laboratory.  

Anthocyanins have been well documented to decompose during storage (26). Additionally, 

anthocyanin amounts are largely different in the growth area of the plants, i.e. light 

conditions (27) and leaves and stalks (28). In this study, we, therefore, obtained fresh açai 

fruit through a legal channel and transported it to our laboratory, preserved by dry ice. After 

separation of the mesocarp/epicarp and endocarp of the açai fruits, their anthocyanins levels 

and antioxidant activities were analyzed. The data obtained was compared with other 

typical anthocyanin-rich fruits: blueberry and blackcurrant. Furthermore, absorption and 

excretion of açai anthocyanins were examined after oral administration of açai extracts into 

rats. 
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MATERIALS AND METHODS 

Chemicals. The standard anthocyanins, cyanidin-3-O-glucoside and 

cyanidin-3-O-rutinoside were obtained from Extrasynthèse (Genay, France). Trifluoroacetic 

acid (TFA), 2,2 -azobis(2-amino-propane)dihydrochloride (AAPH), fluorescein, 

2,2 -azinobis(3-ethybenzothiazoline-6-sulfonic acid) (ABTS), 2,4,6-tripyridyl-1,3,5-triazine 

(TPTZ), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) were purchased from Wako Pure 

Chemical Industries, Ltd. (Osaka, Japan). Randomly methylated -cyclodextrine (RMCD) 

was obtained from Cyclodextrin Research & Development Laboratory, Ltd (Budapest, 
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Hungary). tert-Butylhydroquinone (BHQ) was from Sigma Aldrich, Inc. (St. Louis, MO). 

All other reagents were of the highest grade available. 
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Materials. Fresh açai fruits and freeze-dried açai powder were provided from Abios Co. 

Ltd. (Tokyo, Japan). Blackcurrant (Ribes nigrum) was obtained from SICOLY (St. Laurent 

d�’ Agny, France). Blueberry (Vaccinium spp.) was from Life Foods Co., Ltd. (Tokyo, Japan). 

Fresh açai fruits were separated to mesocarp/epicarp, endocarp, and endosperm (seed). The 

mesocarp/epicarp and endocarp as shown in Figure 1, blackcurrant, and blueberry were 

homogenized respectively in liquid nitrogen, and were lyophilized using a freeze dryer 

EYELA FD-5N (Tokyo Rikakikai, Co. Ltd., Tokyo, Japan). All freeze-dried samples were 

stored at 4ºC in a desiccator until analysis. 

Extraction of Anthocyanins and Lipophilic Ingredients. Anthocyanins from açai and 

the berries were extracted according to the method reported by Ogawa et al. with some 

modifications (5). Briefly, the stored freeze-dried samples (each 200 mg) were added to 8 

mL of 80% ethanol containing 0.5% acetic acid. The solution was allowed to stand in a 

sonicator for 1 min, and the supernatant was recovered by centrifugation at 4,000 rpm for 

10 min under 4ºC. After extraction three times, the supernatants were gathered, and then 

dried with a freeze dryer. The dried extracts were kept at 4ºC in a desiccator with protection 

from light. 

For lipophilic oxygen radical absorbance capacity (L-ORACFL) assay, freeze-dried açai 

and berries (each 2 g) were extracted with 30 mL of hexane to obtain the lipophilic fraction. 

The hexane solution was allowed to stand in a sonicator for 1 min, and the supernatant was 

recovered by centrifugation at 4,000 rpm for 10 min under 4ºC. After extraction three times, 
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the supernatant was dried by evaporator under reduced pressure. The dried extracts were 

kept at 4ºC in a desiccator with protection from light. 

HPLC-DAD. Ten milligrams of each extract was dissolved in 1 mL of 50% of methanol 

containing 0.5% BHQ and 0.5% TFA, and filtered through a 0.45 m membrane filter 

(Nacalai Tesque, Inc., Kyoto, Japan) to analyze by HPLC with photo-diode array detector 

(DAD). The HPLC system employed to analyze anthocyanins was a JASCO system control 

program HSS-1500 (Tokyo, Japan) equipped with JASCO-BORWIN chromatography data 

station, pump PU-1580, autosampler AS-1559, column oven CO-1565, and DAD system 

MD-1510 for monitoring at all wavelengths from 200�–600 nm. For the column, Capcell 

Pak ACR ( 4.6 x 250 mm, 5 m, Shiseido Co. Ltd., Tokyo, Japan) was used at 40ºC. For 

the analysis of açai anthocyanins, linear gradient elution was performed with solution A 

(0.5% TFA aqueous) and solution B (acetonitrile 0.1% TFA) delivered at a flow rate of 1.0 

mL/min as follows: initially 88% of solution A then for the next 25 min 85% A. For the 

analysis of berry anthocyanins, linear gradient elution was performed with solution A (0.5% 

TFA aqueous) and solution B (acetonitrile containing 0.1% TFA) delivered at a flow rate of 

1.0 mL/min as follows: initially 92% of solution A; for the next 50 min, 85% A; for another 

10 min, 70% A; for another 5 min, 40% A. The injection volume for the extract was 10 L. 

Folin-Ciocalteu Assay. Total phenolics analysis was based on the Folin-Ciocalteu 

method (29). Gallic acid as standard compound and samples dissolved in 80% ethanol 

(each 80 L) were transferred into 96-well plate, and then 80 L of 10% phenol reagent 

was added in each well. After addition of 80 L of 10% Na2CO3 solution, the plate was 

incubated at room temperature for 1 h without shacking under a dark condition. The 
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supernatants obtained by centrifugation at 2,400 rpm for 10 min were transferred to another 

96-well plate, and then immediately measured absorbance at 760 nm. The results were 

expressed as milligrams of gallic acid equivalents (GAE) per gram extract (mg GAE/g 

extracts).  

ORACFL Assay. Hydrophilic ORACFL (H-ORACFL) assay and L-ORACFL assays were 

conducted separately according to the method reported by Wu et al. with some 

modifications (30, 31). For the H-ORACFL assay, 20 L of Trolox or test samples diluted in 

50% ethanol solution was transferred to a 96-well plate, and then 150 L of 8.38 nM 

fluorescein was added. After 10 min of incubation at 39oC, 25 L of 153 mM AAPH 

diluted in 75 mM phosphate buffer (pH 7.4) was added in each well, and then immediately 

measured fluorescence (Ex. 485 nm, Em. 528 nm) at one minute intervals for 60 

consecutive measurements using Flex Station II (Molecular Device, Inc., Silicon Valley, 

CA, USA) 

For the L- ORACFL assay, 10 L of Trolox and test sample diluted in 7% RMCD solution 

were transferred to a 96-well plate, and then 100 L of 7.5 nM Fluorescenin solution was 

added. After 10 min of incubation at 39oC, 37.5 L of 63.5 mM AAPH buffer solution was 

added in each well, and immediately measured fluorescence (ex. 485 nm, em. 528 nm) at 

one-minute intervals for 60 consecutive measurements.  

Individual ORACFL values were calculated by using a quadratic regression equation 

between the Trolox or sample concentration and net area under the fluorescence decay 

curve. Data are expressed as micromoles of Trolox equivalents (TE) per gram extract of 

sample ( mol TE/g extracts). The area under the curve (AUC) was calculated. The data 
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were analyzed using a Soft®MaxPro4.7 (Molecular Devices, Inc., Silicon Valley, CA).  142 
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DPPH Radical Quenching Assay. The DPPH radical quenching assay was carried out 

according to the method reported by Blois (32). Each sample extract was dissolved in 50% 

ethanol at a concentration of a 2 mg/mL. The sample (150 L) was added into 3 mL of 100 

M DPPH in ethanol, and absorbance at 517 nm was measured after 30 min at room 

temperature. The antioxidant activity of the samples was calculated as the DPPH radical 

quenching activity (%) compared with the data using only DPPH. 

SOD Assay. The levels of SOD-like activity in the extracts were measured using the 

SOD Assay Kit-WST according to the technical manual provided by Dojindo Molecular 

Technologies, Inc. (Tokyo, Japan). Each extract was dissolved in a dilution buffer at a 

concentration of 1 mg/mL. This assay relies on WST-1 

[2-(4-iodophenyl)-3-(4-nitrophenyl-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium 

salt], which produce a water-soluble formazan dye upon reduction with O2
�–, a reaction 

inhibited by SOD. In a 96-well microplate, 20 L of sample solution (Sample well and 

Blank 2 well) or double distilled water (Blank 1 and Blank 3) was mixed with 200 L of 

WST working solution. For Blank 2 and Blank 3, 20 L of dilution buffer was added. Then, 

20 L of enzyme working solution was added to each Sample well and Blank 1 well. The 

plate was incubated at 37ºC for 20 min and the absorbance was determined at 450 nm using 

a microplate reader (Model 550, Bio-Rad Laboratories, Hercules, CA). SOD-like activity 

(inhibition rate, %) was calculated by the following equation: 

SOD-like activity (inhibition rate, %)  

= {[(ABlank 1 �– ABlank 3) �– (ASample �– ABlank 2)]/(ABlank 1 �– ABlank 3)} X 100 
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where ABlank 1, ABlank 2, ABlank 3, and ASample were the absorbance of Blank 1, Blank 2, Blank 

3, and Sample wells, respectively.  

ABTS Radical Quenching Assay. The ABTS radical was generated through a chemical 

oxidation reaction with potassium persulfate as described by Re et al (33). 100 mL of 7 mM 

ABTS solution and 50 mL of 7.35 mM potassium persulfate solution were mixed and left 

for 12 h at room temperature. The concentration of the ABTS radical solution was adjusted 

with ethanol to an absorbance at 734 nm from 0.80�–0.90. The sample (2 mg/mL) or 0.1 

mg/mL Trolox or solvent (100 L) was added into 3 mL of ABTS radical solution, 

incubated at room temperature for 5 min, and the absorbance at 734 nm was measured 

immediately. The percentage inhibition of the radical scavenging activity was calculated. 

Ferric Reducing Activity Power (FRAP) Assay. The FRAP assay was carried out as 

described by Benzie and Strain (34) with a slight modification.  FRAP reagent consisted 

of 10 mM TPTZ solution in 40 mM hydrochloric acid, 300 mM sodium acetate buffer (pH 

3.6), and 20 mM ferric chloride (III) solution at the ratio of 10:1:1 (v/v/v), respectively. The 

sample (2 mg/mL) or solvent (100 µL) was added into 3 mL of FRAP reagent, incubated at 

room temperature for 3 min, and the absorbance at 593 nm was measured immediately. The 

results were calculated as mg Trolox equivalent/mL. 

Animal Experiments. Male SD rats (6 weeks; Japan SLC, Shizuoka, Japan) were 

housed in an air-conditioned room (23 ±1ºC) under 12 h dark/12 h light cycles (light on 

8:00�–20:00) with free access to control diet which contained no anthocyanins (10 kcal% fat, 

D12450B, Research Diets, Inc., New Brunswick, NJ, USA) and tap water. Animals were 

acclimated to these conditions for 2 weeks before use in experiments. All experimental 
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procedures were in accordance with the guideline of the University of Shizuoka, Japan, for 

the Care and Use of the Laboratory Animals, based on those of the American Association 

for Laboratory Animal Science. 

Protocol-1. Açai extracts prepared according to the methods described above were 

dissolved in 0.1% citric acid as amounts of 400 mg/mL just before the administration to rats. 

Açai extracts were administered orally to rats (400 mg/kg body weight; 6 rats per group) 

with prior starvation for 12 h and their urine was collected over six consecutive 2 h periods, 

and then collected during 12�–24 h after administration. Vehicle controls were given same 

volume of 10% citric acid. The collection bottle, which was protected from light, contained 

2 mL of 10% citric acid. The volume of urine was measured at each sample time and the 

urine was stored at �–20°C after acidification by addition of 350 L of 6 M HCl. After 12 h 

of administration of açai extracts, the control diet which contained no anthocyanins was 

given to rats. 

Protocol-2. After 12 h starvation, açai extracts dissolved in 10% citric acid (400 mg/mL) 

were orally administered to rats at a rate of 400 mg/kg body weight. Vehicle controls were 

given same volume of 10% citric acid. The rats (6 rats per each group) were anesthetized 

with ether at individual time points (0, 15, 30, 60, 120, and 240 min) and blood was 

collected from the abdominal vein using heparinized tubes (Venoject II, Terumo, Tokyo, 

Japan). The plasma was separated by centrifugation at 3,000 rpm for 10 min and acidified 

by addition of 20 L 12 M HCl to 1 mL plasma, and then stored at �–80 C for analysis 

within one month.  

Extraction of Anthocyanins from Plasma and Urine. The extraction procedure was as 
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previously described (35) with some modifications. Each frozen, acidified plasma or urine 

sample was thawed, and aliquots (500 µL for plasma or urine) were loaded onto OASIS 

HLB (10 mg) extraction cartridges (Waters Co., Milford, MA), which was equilibrated with 

0.01 M oxalic acid. After washing the cartridge with 2 mL of 0.01 mM oxalic acid, 

anthocyanins were eluted with 1 mL of methanol containing 0.5% TFA. The eluate was 

evaporated to dryness using a centrifugal concentrator (VC-96N, Taitec Co., Saitama, 

Japan). The residue was then dissolved in 150 L of methanol containing 0.5% TFA, 

filtered with a 0.45 µm membrane filter, and analyzed by high performance liquid 

chromatography (HPLC) as described above. 
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RESULTS AND DISCUSSION 

Polyphenol and Anthocyanin Amounts in Açai. Total polyphenol and anthocyanin 

amounts in the edible mesocarp/epicarp and fibrous endocarp, which were separated from 

fresh açai fruit, were analyzed by HPLC-DAD system, and their levels were compared with 

commercially available freeze-dried açai powder and anthocyanin-rich blueberry and 

blackcurrant. Figure 3A shows the typical HPLC chromatogram at 520 nm of the freeze- 

dried açai powder. Two major peaks appeared and were identified as 

cyanidin-3-O-glucoside (C3G) and cyanidin-3-O-rutinoside (C3R), by means of their 

retention times and spectra as compared to those of the commercially available 

anthocyanins. Other anthocyanidins and anthocyanins were under the detection limit in the 

açai samples used in this study. This agrees with the results reported by Gallori et al (18). 

As shown in Table 1, the total amounts of anthocyanins in the edible mesocarp/epicarp and 
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fibrous endocarp were 18.5±5.5 mg/g extracts (C3G, 5.49±1.5 mg/g; C3R, 13.0±3.9 mg/g) 

and 1.64±0.10 mg/g extracts (C3G, 0.39±0.04 mg/g; 1.25±0.06 mg/g), respectively. 

Therefore, anthocyanins existing in açai were distributed ten times higher in the edible 

mesocarp/epicarp than in the fibrous endocarp. On the other hand, total polyphenol levels 

that included these anthocyanins were within a similar range: 81.2±9.5 in skin and 61.9±6.1 

mg GAE/g extracts.  

Commercially processed açai pulp, which contains mesocarp/epicarp and certain 

amounts of endocarp, has been reported to contain various polyphenols, including apigenin, 

protocatechuic acid methyl ester, and dihydroconiferyl alcohol (20). Açai endocarp fibers 

may possibly contain high amounts of certain polyphenols other than the anthocyanins 

found in the mesocarp. In fact, total polyphenol and anthocyanin contents of freeze-dried 

açai powder were higher than that of the mesocarp/epicarp portion itself utilized in this 

study, although the freeze-dried açai powder was a mixture of mesocarp/epicarp and 

anthocyanin-poor endocarp.  

Basically, polyphenol contents in açai dramatically changes depending on the time 

of harvest even when from the same growing area and stage (36). Additionally, amounts of 

flavonoid in botanical plants were considered to be largely different among cultivated area 

(37). Accordingly, amounts of polyphenols including anthocyanins in fresh açai might be a 

little less than that of freeze dried one used in this study, because of different cultivated area 

and/or growing stage. We should, therefore, investigate in our future experiments the 

seasonal differences of polyphenols and anthocyanins existing in fresh açai 

(mesocarp/epicarp and endocarp) harvested from the same cultivation area. 
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Antioxidant Activities of Açai. The antioxidant activities of the mesocarp/epicarp and 

endocarp portions of açai were evaluated using six types of ordinary antioxidant evaluation 

methods, H-ORACFL, L-ORACFL, DPPH and ABTS radical quenching assay, FRAP assay, 

and SOD-like activity (Table 2). ORACFL assay, which is the abbreviation of Oxygen 

Radical Absorbance Capacity assay with fluorescein, was designed to measure the 

antioxidant capacity of foods toward peroxyl radical. A wide variety of foods have been 

tested using this method as Trolox equivalent (TE) (38), and therefore ORAC is considered 

to be one of most international, standardized methods for antioxidant potency of foods. 

H-ORACFL and L-ORACFL values in freeze-dried açai powder were 6,334±606 and 21.3±3 

mol TE/g extracts, respectively. Interestingly, açai mesocarp/epicarp indicated higher 

results for both H- and L-ORACFL activities than those of freeze-dried açai powder, 

although mesocarp/epicarp contained less anthocyanins compared to freeze-dried açai 

powder (Table 1). Trolox at 3.2 g/mL in the reaction mixture (ca 12.9 M) quenched 

DPPH and ABTS radicals by 47% and 20%, respectively, comparable to previous results 

(39). In the present study, antioxidant potencies by DPPH and ABTS radical scavenging 

activity, FRAP assay and SOD like activity, in extracts from açai mesocarp/epicarp, 

endocarp, and freeze-dried açai powder, were compared at the same concentration of 2 mg 

extracts/mL. In all antioxidant assays except ABTS radical quenching assay, 

mesocarp/epicarp extracts showed stronger activity than those of endocarp or freeze-dried 

açai powder. These results indicate that the antioxidant capacity of açai may be remarkably 

higher than that of the other well known, antioxidative plants, blueberry and blackcurrant. 

Consequently, we suggest in this study that açai has the possibility of being one of the 
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potent antioxidant foods.  

Absorption Profiles of Açai Anthocyanins in Plasma and Urine after Single 

Administration. The concentration profiles of C3G and C3R in rat plasma and urine after 

consumption of 400 mg açai extracts per kg body weight (26.3 mol C3G and 37.5 mol 

C3R/kg body weight) were investigated by HPLC-DAD. In this experiment, we used açai 

extracts obtained from freeze-dried açai powder, because adequate amounts of fresh açai 

fruit could not be procured. Figure 3 shows typical HPLC chromatograms at 520 nm for 

intact açai extracts (A), rat plasma at 120 min after an oral dose of the extracts (B), and rat 

urine corrected during 2 hr and 4 hr after an oral dose of the extracts (C). The peak pattern 

was quite similar during all chromatograms, indicating that açai anthocyanins were mainly 

absorbed into the body as intact anthocyanins. We could not find detectable amounts of 

anthocyanins in plasma obtained from rats administrated vehicle solvent (data not shown). 

These results paralleled those reported by Mertens-Talcott et al. for human healthy 

volunteers (22). The plasma concentration of C3R reached a maximum of 537.0±99.1 M 

after 120 min of administration and then sharply decreased almost to the basal levels after 

240 min (Figure 4). On the other hand, C3G levels in plasma were reached plateau at 30 

min of administration, and continued same levels until 120 min of administration (81.7±9.1 

M at 30 min, 101.0±55.6 M at 60 min, and 86.0±38.4 M at 120 min). Matsumoto and 

co-workers reported that when C3G or C3R was independently orally administered to rats, 

both anthocyanins appeared in the plasma at 15 min after administration (40). After this 

period, C3G was immediately diminished from plasma, but C3R increased in the period up 

to 120 min post-administration and then gradually decreased. They hypothesized that these 
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differences between C3G and C3R might be because of sugar moiety conjugated cyanidin: 

the decrease in the levels of the rutinosides was gentler than that in the case of the 

glucosides (40). Our results on C3R existing in açai agree with their results, but the 

absorption of C3G indicated a somewhat different pattern. Absorption patterns of 

anthocyanins have been reported to be strongly affected by other ingredients. For example, 

when phytic acid is administered with anthocyanins, phytic acid enhances gastrointestinal 

absorption of anthocyanins (41). Hence, açai probably contains some ingredients to 

enhance and/or change the absorption patterns of anthocyanins, especially C3G.  

 After administration of 400 mg açai extracts per kg body weight to rats, their urine 

was collected at 2 hr interval for 6 times, and then 12 hr for one time. The urinary 

anthocyanins were analyzed by HPLC-DAD (Figure 3C). Açai anthocyanins, C3G and C3R, 

administered orally were appeared as intact forms in the urine. Most of the anthocyanins 

were excreted into the urine between 0 to 6 hr after administration, and only small 

quantities were excreted after 6 hr of administration (Figure 5). The average quantity of 

C3G and C3R excreted in the urine during 24 hr after administration represented 

0.60±0.08% and 1.00±0.11% of the individual anthocyanins ingested. Hence, we guessed 

that C3R in açai might exert strong bioavailability compared with C3G. Some researchers 

reported that small amounts of anthocyanin metabolites, for example methylated 

derivatives, were detected in the urine from rats administered anthocyanin rich berries (42). 

However, we could not find detectable amounts of anthocyanin metabolites in urine in this 

study, indicating that most of C3G and C3R existed in açai might be absorbed to body as 

their intact forms immediately but a with a slight delay in the case of C3G compared with 
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318 
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324 
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327 

consumption of C3G singly, circulated in the blood stream, and then immediately excreted 

into urine until 6 hours after the administration.   

 In conclusion, this study first reported the anthocyanin and total polyphenol levels 

and the antioxidative activities of the mesocarp/epicarp and endocarp portions of fresh açai. 

The amounts of anthocyanins and total polyphenols in the mesocarp/epicarp were 

remarkably higher than that of the endocarp. Additionally, these amounts were significantly 

higher than that of anthocyanin-rich blueberry and blackcurrant. Furthermore, we suggested 

that the intact açai anthocyanins, C3G and C3R, were absorbed and circulated in the blood 

stream. 
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Figure 1. Growing açai in Amazonian area, Brazil (A), and cross-sectional view of açai 

fruit (B). 

 

 

Figure 2. Chemical structures of anthocyanins in açai. 

(A) cyanidin-3-O-glucoside and (B) cyanidin-3-O-rutinoside.  

 

 

Figure 3. Typical HPLC profiles of the extracts of freeze-dried açai powder, plasma, and 

urine at 520 nm. (A) Extracts of freeze-dried açai powder, (B) rat plasma sample collected 

120 min after an oral dose of açai extracts, and (C) rat urine collected between 2 to 4 h after 

an oral dose of açai extracts. C3G, cyanidin-3-O-glucoside; C3R, cyanidin-3-O-rutinoside. 

 

 

Figure 4. Time-dependent amounts in the plasma of anthocyanins which were orally 

administrated as a single dose of 400 mg açai extracts/kg body weight (26.3 mol C3G and 

37.5 mol C3R/kg body weight). Analysis was by HPLC as described in the Materials and 

Methods. The concentrations of C3G ( ) and C3R ( ) were calculated and summed. Values 

were indicated as mean±S.D (n=6). C3G, cyanidin-3-O-glucoside; C3R, 

cyanidin-3-O-rutinoside. 
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Figure 5. Time-dependent excretion in the urine of anthocyanins that were orally 

administered as a single dose of 400 mg açai extracts/kg body weight (26.3 mol C3G and 

37.5 mol C3R/kg body weight). Analysis was by HPLC as described in the Materials and 

Methods. The concentrations of C3G ( ) and C3R ( ) were calculated and summed. Values 

were indicated as mean±S.D (n=6). C3G, cyanidin-3-O-glucoside; C3R, 

cyanidin-3-O-rutinoside. 
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Table 1. Contents of Total Polyphenols, Anthocyanins, and Lypophilic Amounts in Each 

Sample 

Samples Polyphenols a 
Anthocyanins (mg/g extracts) Lypophilic amounts 

Total C3G C3R (mg/g extracts) 

Açai      

Freeze-dried açai powderb 91.8±6.8 34.1±2.2 11.8±1.0 22.3±1.2 0.330 

Mesocarp/Epicarp 81.2±9.5 18.5±5.5 5.49±1.5 13.0±3.9 0.072 

Endocarp 61.9±6.1 1.64±0.10 0.39±0.04 1.25±0.06 0.049 

Blueberryc 25.6±0.2 10.21±0.54 0.03±0.00 u.d. 0.006 

Blackcurrantc 47.5±0.6 27.53±0.99 1.27±0.03 8.24±0.28 0.006 

aThe results were expressed as milligrams of gallic acid equivalents (GAE) per gram 

extract (mg GAE/g extracts). 
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bFreeze-dried açai powder was composed of the edible layers of acai including mesocarp 

and endocarp, removed after steeping in water.  

cBlueberry and blackcurrant contain other anthocyanins: delphinidin-glycosides, 

peonidin-glycosides, petunidin-glycosides, peonidin-glycoside, and malvidin-glycosides.  

C3G, cyanidin-3-O-glucoside; C3R, cyanidin-3-O-rutinoside; u.d., under the detection 

limit.  
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503 Table 2. Antioxidant Activities of Açai 

Samples 

Antioxidant activity evaluated by 

ORACFL
a 

DPPHb ABTSb SODb FRAPb 
hydrophilic lipophilic

Açai       

Freeze-dried açai powder 6334±606 21±3 92.0±1.69 96.0±1.56 81.0±6.16 298±9.76

Mesocarp/Epicarp 6605±853 37±6 85.4±1.69 72.0±1.56 77.5±6.16 217±9.76

Endocarp 4832±695 57±17 57.2±9.33 86.9±9.40 76.7±9.70 142±23.1

Blueberry 253±16 56±2 28.0±0.36 14.0±0.09 45.0±0.58 56±2.30 

Blackcurrant 610±170 148±11 52.0±1.00 31.0±0.10 68.3±2.50 131±4.30

Trolox - - 47.0±0.40 20.0±0.10 - - 

aHydrophilic ORACFL (H-ORACFL) assay and lipophilic ORACFL (L-ORACFL) assay were 

expressed as micromoles of Trolox equivalents (TE) per gram extracts of sample ( mol 

TE/g extracts).  
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bAçai and berry extracts (2 mg/mL) and trolox (0.1 mg/mL) were individually used for each 

method. Antioxidant potencies were indicated as % of radical quenching activity (DPPH 

and ABTS) and mg TE/mL (FRAP) as described in Materials and Methods. SOD-like 

activity was indicated as inhibition rate (%).  
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